This post is in response to a recent question I was asked about why not many students choose to study nanotechnology and what can be done to make nanotechnology programs more attractive.

According to its proponents, nanotechnology has so much future potential. They prophesize that it will be everywhere and leave few disciplines untouched. They were right. Nanoscience enables many breakthroughs and technological advantages. However, few people go to school to study nanotechnology. Why?

The problem is the way nanotechnology is often taught. This, is narrowly focused on the nanoscience and its applications while breezing over the fundamental physics, chemistry, and often biology, which enable these. Without knowing these fundamentals in some detail, it is hard to understand how to use nanoscience to create valuable products. All these, however, can be very difficult to cram into a limited curricula.

Compounding the problem, many nanotechnology programs choose not to teach hands-on engineering skills to make room for all this theory.  The hands-on skills, however, are what wins students interviews and job offers. Nano education instead focuses on specific scientific phenomena and technologies instead of a discipline, which is why nano programs often come short on teaching the transferable skills needed to work in any specific discipline.

Now, almost every scientific and engineering discipline has work at the nanoscale. Transistor technology, for example has been nanotechnology for decades due to the dimensions of modern transistors. The field of cell biology has used nano-sized viruses to perform gene editing for decades and many chemical products used in daily life have nanoparticles in them. An education in science now inherently implies some training in nanotechnology. Therefore, many students wonder why they should choose to study nanotechnology specifically when they also have the option to study a specific discipline, develop transferable skills in it, and learn something about nanotechnology too.  Working in a more traditional discipline may be also be a fallback for them if a job or career in nanotechnology does not materialize.


Attracting More Students to Nanotechnology

As many postsecondary educators know, many of students choose what to study based on how they think it will land them a job once they are out of school. Nanotechnology focused programs are seen as more risky for careers then others. Educators need to minimize this career risk to attract more students.

One way to do so is to give hard scientific or technical problems and have students solve them with support but minimal guidance. Employers will expect this of their new hires. Ideally such a project will involve a lot of lab work and some calculations and simulation directly related to the problem it is addressing.

Another way is to establish connections between a nano program and local industry. In my opinion, this action is beneficial for both if well brokered. These connections should place students and educators in contact with potential employers and create opportunities that benefit both. As an example, I have seen internships and design projects created as a result of the industry outreach efforts by nano programs I have worked with. A program may offer class credit for one of such internships or projects, give students the opportunity to gain industry-like experience, and willing local companies gain potential new hires from them. These connections also ensure local companies the program is trying to cater to their needs. For US based educators and students, a great resource to find local companies working with some form or micro and nanotechnologies is the SCME industry map webpage.

Because nanoscience underlies so many advances in technology, teaching it well is important. Giving students project experience and exposure to industry can be immensely helpful. As a student, I did not fully understand nanoscience or engineering until I started working with it in a lab and interacting with entrepreneurs working with MEMS and nanotechnologies. To increase student employability and attractiveness of nanotechnology as a separate field of study, it needs to be taught in such a way to make it practical and relevant to current technologies.